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1. Introduction

The Kaluza-Klein vacuum, empty R1,d × S1, was shown many years ago [1] to be non-

perturbatively unstable. The instability is against a process of semiclassical barrier pen-

etration that results in the formation of a “bubble of nothing” (BON) which expands at

the speed of light and “eats up” the spacetime. This bounce solution possesses a number

of intriguing features:

• It is admissible only when the boundary conditions on the circle break supersymme-

try.

• The solution is topology changing, so it is not clear if and when it must be included

in the path integral.

• Explicit solutions are known only for toroidal compactifications, though one suspects

that they may be generic to non-supersymmetric compactifications.

• From a four dimensional perspective, the radius of the fifth dimension is a modulus.

Quantum mechanically this modulus has a potential already in perturbation theory. If

the potential does not have a stable minimum, it is not clear that the Witten solution

is of any particular relevance. If it does, it is not clear whether the instability persists.

The most common attitude towards this instability has been to ignore it, because the

amplitude for this process

Γ = Ce
− πR2

4GN (1.1)
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is exponentially small in the regime R À `p where the geometric description is reliable.1

Speculative solutions to some of those problems have been raised e.g. in [2] and [3].

Consider a compactification of one of the superstring theories on a six-dimensional

torus, with all the radii but one (associated with the direction x5) of order the string scale.

Call R the radius of the fifth dimension. In order that a bounce solution exist, we impose

Scherk-Schwarz boundary conditions in this direction. The Witten bounce is a solution

of the string equations of motion to leading order in α′. The stability analysis for the

Schwarzschild-Tangherlini black hole [4, 5] can be carried over to this case (see discussion

in [6] and [7] section 4.4) and implies that there are no zero modes2 for the quadratic

fluctuation operator. Therefore, one expects to be able to compute corrections to the

solution systematically for large R in powers of α′/R2. In terms of the string coupling, gs,

and length scale, `s, the leading order action, eq. (1.1), takes the form:

S(0)
w =

A

g2
s

(R

`s

)3
(1.2)

where A is a constant of order unity. The solution and the action will receive corrections

in powers of α′

Sw = S(0)
w · f(

R

`s
) (1.3)

where f → 1 as R → ∞. One can imagine various possible behaviors for f as R → `s. If

it is a positive number of order one, then the tunneling rate remains suppressed at weak

coupling. However, if the function f vanishes or becomes very small, the rate for tunneling

becomes order one, corresponding to the disappearance (or near disappearance) of the

barrier between flat space and the bubble configuration.

In low orders of the α′ expansion for the solutions, there is no clear signal for what the

behavior might be at R ∼ `s. But it has long been observed that within string theory the

existence of Witten’s instability is often associated with the presence of winding tachyons

(see for example [8 – 10]). Indeed, Witten’s solution is only admissible if the fermions obey

anti-periodic boundary conditions around the KK circle. For such boundary conditions,

the Type II and the heterotic string theories develop a perturbative tachyon instability [11]

for a sufficiently small radius. It is possible that the appearance of tachyons will tend to

decrease f .

1.1 Horowitz’s conjecture

Recently, Horowitz [12] has argued that black strings can catalyze Witten’s decay process.

Horowitz starts with the observation that in the presence of the black string, the compacti-

fication radius (for toroidal compactifications) is a function of position. For suitable choice

of charges, the radius can be arbitrarily slowly varying, and can approach the string scale

near the horizon, even if the radius is large at infinity. In this region, a tachyon appears.

1Here GN ∼ `2p is the four dimensional Newton’s constant and R is the radius of the KK direction.
2By this we mean that there are no non-trivial zero modes. Of course, there are zero modes that

correspond to the rotation and translation symmetries of these solutions.
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Horowitz observes an analogy with the work of ref. [13] where in a similar situation the ap-

pearance of a winding tachyon caused a topology changing transition where a circle pinched

off the original geometry. The geometry in this case is similar to that of Witten’s bubble

solution (which will be reviewed in detail in the next section), where the radius of the KK

direction shrinks to zero size as one approaches the bubble wall. The work of [13] was based

on the correspondence of exponentially growing tachyon field configurations with certain

Liouville conformal field theories. Horowitz notes that this could represent a previously

unsuspected endpoint for Hawking radiation. This is an intriguing observation, but the

physics is in many ways obscure. For instance, such world-sheet theories do not include

some of the features (e.g. the various moduli and approximate moduli) one typically finds

in critical string models.

In this note we try and gain some understanding of Horowitz’s suggestion from a space-

time perspective. The basic observation we use is that for this analysis to make sense the

geometry in the vicinity of the horizon is assumed to be nearly flat. This is necessary for

there to even be a winding tachyon a-la Rohm [11]. Therefore, the vicinity of the horizon is

itself subject to Witten’s flat-space instability. There is however a physical difference. Wit-

ten’s instability is an instability in pure GR. Here, the presence of the black string “brings

down” a scalar field that becomes tachyonic near the horizon (a quasi-localized tachyon, in

the terminology of [14]). Applying one’s naive field theoretic intuition, Horowitz’s claim

may be understood as the statement that what used to be a non-perturbative instability

(a tunneling event) in the empty KK vacuum becomes a perturbative instability (shrinking

the potential barrier or rolling down a tachyonic potential) in the presence of the black

string.

To develop a space-time picture, we first examine the potential barrier for the Witten

process. We then proceed to ask whether Witten’s flat space instability is enhanced due

to the presence of a tachyon at small radius. In the regime where we can trust the α′

expansion, the answer to this last question is sensitive to order one, model dependent

numbers. In type II string theory, there does not appear to be any enhancement, but

the tachyon does exhibit a zero mode in the BON background. We speculate on possible

behaviors once higher order correction in α′ are included. Recent related works include,

for example, refs. [28 – 30].

2. Potential barrier for the Witten bounce

In standard analysis of vacuum decay, one starts with a theory with a known false and true

vacuum, and looks for solutions which in the far past (in Euclidean time) asymptote to a

bubble of true vacuum, large enough that it is energetically favored for it to grow, and to

the false vacuum in the far future [15]. This can be understood as a conventional WKB

calculation of quantum mechanical tunneling over a barrier [16, 17]. In a field theory, one

can actually consider many trajectories; the bounce solution can then be thought of as

the most probable tunneling path, others giving a lower bound on the tunneling rate. In

theories coupled to gravity, the situation is more subtle, but the picture is similar [18, 19].

– 3 –
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Witten obtained his bounce in an approach which seems more abstract. He exhibited

a solution of the Euclidean five dimensional Einstein equations which had finite action,

and a single negative mode. To interpret the solution he followed the prescription of [18],

analytically continuing the solution to Minkowski signature and demonstrating that it

corresponded to a decay to a bubble which grows. The bubble has the bizarre feature that,

from a four dimensional perspective, it has no interior; space time ends at the bubble wall.3

In this section we will construct a set of classical configurations of the theory that

smoothly interpolate between the KK vacuum and the Witten bubble at t = 0. We will

require that these configurations represent suitable initial data in general relativity, so

that it makes sense to think of their energy as potential energy. The ADM energies of this

sequence of configurations then describe a potential barrier. The sequence of configurations

is a possible tunneling trajectory. Motion over this barrier, in the sense of WKB, gives a

tunneling trajectory to Witten’s bubble configuration, though not necessarily the lowest

action trajectory. As we will see, the ADM energies of these static solutions indeed give a

potential barrier with the expected properties.

We start by briefly describing Witten’s bounce. Begin from the metric describing the

KK vacuum in D = n + 3 dimensions

ds2 = −dt2 + dx2
1 + · · · + dx2

n+1 + dχ2 (2.1)

with t, xi running from −∞ to ∞ and χ ∼ χ + 2πR. We now analytically continue to

Euclidean signature

ds2
E = dt2E + dx2

1 + · · · + dx2
n+1 + dχ2 (2.2)

and change to spherical coordinates by defining r2 = t2E + ~x · ~x

ds2
E = dr2 + r2dΩ2

n+1 + dχ2 (2.3)

The Euclidean bounce solution mediating the decay into a BON is an analytical continua-

tion of the D−dimensional Schwarzschild solution

ds2 =
dr2

1 −
(

Rn/2
r

)n + r2dΩ2
n+1 +

(

1 −
(

Rn/2

r

)n)

dχ2 (2.4)

where regularity requires that we set the “horizon” radius to be at Rn
2 and restrict the

radial coordinate r ≥ Rn
2 .

For the Lorentzian bounce we write dΩ2
n+1 = dθ2 +sin2 θdΩ2

n and analytically continue

θ → π
2 + iT to get

ds2 =
dr2

1 −
(

Rn/2
r

)n + r2
(

−dT 2 + cosh2 TdΩ2
n

)

+

(

1 −
(

Rn/2

r

)n)

dχ2 (2.5)

3Another question is the nature of the true vacuum “nothing” state. Within string theory the disap-

pearance of the spacetime manifold itself which can be loosely thought of as the “arena” for closed string

modes seem to resonate well with processes in the open string sector where as a result of an instability

the “arena” for open strings, namely D-branes, disappear. We do not offer here any new insights into this

problem.
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which looks to an observer in n + 2 dimensions (assuming R is small and that one is not

probing too close to r = Rn
2 ) as if a hole of radius Rn

2 appeared at time T = 0 in Minkowski

space and then keeps expanding until it “eats up” all of space.

Another known bubble solution in the same R1,n+1 × S1
R, the static bubble [20, 22], is

a product of the n + 2−dimensional Euclidean Schwarzschild solution and a trivial time

direction

ds2 = −dT 2 +
dr2

1 −
(

R(n−1)/2
r

)n−1 + r2dΩ2
n +

(

1 −
(

R(n − 1)/2

r

)n−1
)

dχ2. (2.6)

From the perspective of an n+2−dimensional observer this is a static massive BON whose

ADM mass is given by

Mn+2 =
Ωn

16πGn+2

(

R

2
(n − 1)

)n−1

. (2.7)

Notice that the size of this bubble R(n−1)
2 is smaller than the size of Witten’s bubble at the

moment of formation Rn
2 . In fact, this is very natural from the usual perspective of vacuum

decay. The dynamics of true vacuum bubbles are determined by a competition between

the negative energy contribution of the bubble (by definition the true vacuum has lower

energy than the false vacuum) and the positive energy due to the tension of the bubble

wall. A small true vacuum bubble will re-collapse while those larger than a critical size will

keep expanding. At the critical size there is always a static unstable bubble. Indeed (2.6)

is known to be classically unstable, e.g. by relating it via double analytical continuation

to the Gregory-Laflamme instability of black strings [20]. Also, Witten’s bounce (2.5) is

massless from the perspective of this n+2-dimensional observer since it should be thought

of as a decay of the vacuum. The positive kinetic energy of the bubble is balanced against

a negative energy associated with the opening of the hole in space.

We now demonstrate how to build initial data corresponding to BON of arbitrary size.

This will lead directly to the construction of the potential barrier for Kaluza-Klein decay.

Let us first examine the Cauchy data for (2.5) and (2.6) at an initial time slice that we

take to be T = 0. The Cauchy data for (2.5) is given by

ds2
Cd =

dr2

1 −
(Rn/2

r

)n + r2dΩ2
n +

(

1 −
(

Rn/2

r

)n)

dχ2. (2.8)

while for (2.6) it is given by

ds2
Cd =

dr2

1 −
(R(n−1)/2

r

)n−1
+ r2dΩ2

n +

(

1 −
(

R(n − 1)/2

r

)n−1
)

dχ2. (2.9)

Assuming spherical symmetry we are led to look at Cauchy data of the general form

ds2
Cd =

dr2

fn(r)
+ r2dΩ2

n + fn(r)dχ2. (2.10)
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We now need to impose the initial data constraint (see e.g. [25])

Gµ0 = Tµ0. (2.11)

Since this is a vacuum solution (namely just the dynamics of gravity without matter) we can

set Tµν = 0. Furthermore, since we are looking for a time symmetric (bounce) solution we

can choose the initial data at the turning point where time derivatives of the metric vanish

so (n+3)Rµ0 = 0. This simplifies the constraint to a vanishing of the n + 2−dimensional

scalar curvature

(n+2)R = − 1

r2

[

n(n − 1)
(

fn(r) − 1
)

+ 2nrf ′
n(r) + r2f ′′

n(r)
]

= 0 (2.12)

which is easily solved to give (for n ≥ 2, namely D ≥ 5)

fn(r) = 1 − an−1
n

rn−1
+

bn
n

rn
(2.13)

with an, bn arbitrary constants.

The parameter an is simply related to the n + 2− dimensional ADM energy of the

solution4

Mn+2 =
Ωn

16πGn+2
an−1

n (2.14)

where Ωn is the volume of the unit n-sphere Sn. This Cauchy data will in general be

singular where f(r) = 0. Let us denote by r0 the largest real solution and demand that

the Cauchy data will be regular by the usual absence of a conical singularity near r = r0

4π

f ′
n(r0)

= 2πR. (2.15)

Even though we can not generally (for n > 2) solve for r0 we can bypass this technicality

by using r0 as our variable. In fact, this will give a bubble solution where r0 is the position

of the wall so it is the natural variable to use. Writing down the equation

fn(r0) = 1 − an−1
n

rn−1
0

+
bn
n

rn
0

= 0 (2.16)

and plugging that into (2.15) we obtain the following relation between the energy of the

solution and the radius of the bubble wall at T = 0

f ′
n(r0) =

1

r0

[

n −
(

a

r0

)n−1
]

=
2

R
(2.17)

which via (2.14) gives the desired relation between the energy and the radius of the bubble

at formation

V (r0) =
Ωn

16πGn+2

rn−1
0

R
(nR − 2r0) (2.18)

4Notice that here we mean the energy as measure by an observer in the n+2-dimensional space spanned

by t, r, Ωn one gets after KK reduction on χ. This should not be confused with the n + 2−dimensional

space like Cauchy surface.

– 6 –
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rS
r0

V@r0D

rW

Figure 1: The shape of the potential barrier penetrated by Witten’s instanton. This figure plots the

potential as a function of r0 which is the size of the bubble at the moment it materializes. There

are two zero energy solutions corresponding to the KK vacuum at r0 = 0 and Witten’s bubble at

r0 = rW . The unstable static bubble is at r0 = rS . The height of the potential at the top is of

order V (rS) ∼ ( R
`p

)n−1 · mp.

Defining for brevity

rW =
Rn

2
and rS =

R(n − 1)

2
(2.19)

to be the corresponding sizes of Witten’s bubble and the static bubble at T = 0 we can

rewrite this as

V (r0) =
Ωn

8πGn+2

rn−1
0

R
(rW − r0). (2.20)

In all dimensions n > 2 (D > 5) this potential looks5 like figure 1.

We can now verify that this is the expected barrier. The potential vanishes in two

places. One is when r0 = 0 which is the KK vacuum. The other is when r0 = Rn
2 which

is the radius of Witten’s bounce in n + 3 dimensions; at this point, the configuration is

precisely the bubble at T = 0 (see equation (2.5)). The extrema of (2.20) are a local

minimum (only for n > 2) at r0 = 0 which corresponds to the perturbative stability of the

KK vacuum and a local maximum at r0 = R(n−1)
2 , at which point the configuration is the

perturbatively unstable static bubble (2.6).

Using (2.16) and (2.17) we can rewrite fn(r) describing the initial data (2.10) in terms

of r0

fn(r) = 1 +
2

R

(r0

r

)n−1
(r0 − rW ) − 2

R

(r0

r

)n
(r0 − rS). (2.21)

The exact (time dependent) solutions are known only for 3 points along this curve, corre-

sponding to the KK vacuum (r0 = 0), the static bubble at the top of the hill (r0 = rS)

and Witten’s bounce (2.8) (r0 = rW ). For the case n = 2 this initial data is a one di-

mensional subset of a two parameter family found by Horowitz and Brill [21] who used

5For the special case of n = 2 (D = 5) the picture looks less smooth at the origin.
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it to demonstrate the existence of solutions with arbitrarily negative energy in GR. The

physical picture presented here is also supported by the analysis of [22].

We end this analysis by stressing that the path in field space indicated by the single

degree of freedom r0 in figure 1. does not represent the actual (minimal action) path in

field space traversed by Witten’s instanton as it tunnels through the barrier. If one were

to write the Witten solution in a gauge with gtt = 1, gµt = 0 (singling out one coordinate

to call the Euclidean time), at general points along the curve the time derivatives (and

the kinetic energy) will be non-zero. Still, this potential barrier captures the qualitative

features of the actual path and demonstrates that Witten’s instanton is a conventional

tunneling phenomenon.

In the next section, we ask whether, in the presence of a tachyon, the potential of (2.20)

is reduced, the barrier perhaps even disappearing in accord with Horowitz’s conjecture.

3. Coupling a quasi-localized tachyon

In Horowitz’s analysis, the role of the black string is to provide a situation in which the

radius of the compact dimension shrinks to the string scale (so that winding tachyons

appear) while keeping the curvature low and the fields slowly varying. Therefore, we will

analyze the question of whether the black string catalyzes the Witten process by asking

whether there is an enhancement of the tunneling rate (1.1) in cases where the KK radius

becomes comparable to the string scale. The quasi-localized tachyon will be modelled by a

scalar field with radial dependent mass term. We start by considering the problem at large

radius, where the α′ expansion is reliable. Even here, in the core of the Witten bounce,

the KK radius becomes small, and one might expect a negative mode corresponding to the

existence of a lower energy configuration.

The action we consider is

S = − 1

16πlnP

∫

V

√
gR +

1

8πln−1
P

∫

∂V
[K]dΣ − 1

2

∫

V

√
g{gµν∂µφ∂νφ + m2(r)φ2} (3.1)

The second term is the Gibbons-Hawking [26] extrinsic curvature term. The mass term

is related to the radius of the fifth dimension and becomes negative when it reaches the

string scale.

A perturbative closed string state in flat space that winds w times around a KK circle

has a mass that depends on the radius of the circle

m2(r) =

(

wR

α′

)2

+
4

α′

(

N − c
)

(3.2)

where N is the left-movers level (which is equal to the right-movers levels when there

are no momentum excitations) and c is an order one model dependent number. e.g. in

type II superstrings c = 1/2 and in the bosonic string c = 1. As shown by Rohm [11]

imposing anti-periodic boundary conditions on spacetime fermions around the circle leads

to a reversal of the usual GSO projection in odd winding sectors w = 2k + 1. Thus,

denoting by Reff(r) the radius of the KK direction as a function of the radial coordinate r,

– 8 –
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if Reff(r)(2k + 1) ≤ 2`s
√

c there will be a physical tachyonic state in the spectrum coming

from this winding sector. Since we are interested in the first winding tachyon (w = 1) the

mass term is

m2(r) =

(

1

α′

)2

gθθ −
4c

α′
(3.3)

where dχ = Rdθ. The equations of motion for the tachyon field derived from (3.1) are

∇2φ − m2(r)φ = 0. (3.4)

where the Laplacian is that appropriate to the background.

As we have seen in the previous section, the metric (at the turning point) of the

classical configurations making up the potential barrier is given by (2.10)

ds2
CD =

dr2

fn(r)
+ r2dΩ2

n + fn(r)R2dθ2. (3.5)

Since we only expect to find an instability (connected with φ) in the region where m2(r) ≤ 0,

namely when gθθ ∼ `s, we can expand around r = r0 by defining r = r0 + λ2/2R and get,

to order λ2

ds2 ≈ dλ2 + λ2dθ2 + r2
0dΩ2

n (3.6)

as was expected because r0 is just a coordinate singularity. Defining Cartesian coordinates

λ2 = x2 + y2 the quadratic fluctuation operator for an S-wave is given by

(∂2
x + ∂2

y) −
(

1

α′

)2

(x2 + y2) +
4c

α′
(3.7)

Comparing with the Schroedinger equation for a 2d harmonic oscillator

−
~

2(∂2
x + ∂2

y)

2m
Ψ +

1

2
mΩ2(x2 + y2)Ψ =

(

N + 1
)

~ΩΨ, N = 0, 1, . . . (3.8)

we see that the quadratic fluctuation operator (3.7) has the spectrum of a shifted 2d

harmonic oscillator with frequency Ω = 2
α′ . The ground state energy is given by

E0 =
2 − 4c

α′
. (3.9)

This ground state corresponds to a negative eigenmodes when c > 1/2.

There are several observations to be made here.

• The question of existence of a negative eigenmode in the spectrum involves a com-

petition between order one numbers.

• Since in all string models c ≤ 1 a negative eigenmode can only arise at most from

the first winding tachyon. This justifies self-consistently our focus on this mode.

– 9 –
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• In type II superstrings, c = 1/2, so there is no instability caused by coupling the

tachyon. On the other hand, the stability is marginal, higher order corrections in α′

could well turn the eigenvalue of this mode negative. The sign of the eigenvalue is

likely to depend on the details of the compactification. In that case, as explained

below, it is likely that one can construct a similar solution with nearly the same

action.

• The eigenfunction for the lowest mode, for large R, has support only very near the

bubble wall, r − r0 < α′

R :

Ψ0 =

(

1

πα′

)
1
4

e−
(r−r0)R

α′ . (3.10)

• If in some model there is an instability for large R we might still expect to find a

solution quite close to the Witten solution. For example, if the tachyon potential

includes a positive quartic term [27], there will be a solution of slightly lower action

with a small admixture of the unstable mode.

In conclusion, to first order in α′, coupling a quasi-localized tachyon seems to have a

very small effect, if at all, on the potential barrier for tunneling into a BON.

4. Application to Horowitz’s conjecture

Recently, Horowitz [12] argued that black strings can catalyze Witten’s decay process.

Namely, if the KK vacuum suffers from the Witten instability at a non-perturbative and

exponentially suppressed rate, the excited state of a black ring in an asymptotically R1,d×S1

space can enhance the decay rate dramatically. In this section we try to apply the lessons

from the previous sections to this scenario.

4.1 The black-ring solution

The black string string-frame metric in n + 3 spacetime dimensions is given by

ds2 =
1

H(r)
[−f(r)dt2 + R2dθ2] +

dr2

f(r)
+ r2dΩ2

n

Bxt =
sinh 2α

2H(r)
, e−2Φ = H(r) where

f(r) = 1 − rn−1
H

rn−1
, H(r) = 1 +

rn−1
H

rn−1
sinh2 α = cosh2 α − f(r) sinh2 α

(4.1)

The solution has a horizon at r = rH and a singularity at r = 0. The winding number

around the θ direction is proportional to

W =

(

rH

`s

)n−1

sinh 2α. (4.2)

– 10 –
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This classical solution involves no fermionic fields and so exists also in the case where the

fermions have anti-periodic boundary conditions around the KK circle, breaking supersym-

metry. The effective radius of the KK direction

R2
eff(r) ≡ gθθ(r) =

R2

H(r)
(4.3)

decreases with r until it vanishes hitting the singularity at r = 0.

One can choose the parameters W À e2α À 1 keeping the asymptotic value of the KK

radius large and the asymptotic string coupling small

R À `s and gs(∞) ¿ 1. (4.4)

In this regime, the black string has two important features. First, at the horizon r = rH

the effective radius can be tuned to reach the string scale

R2
eff(rH) =

R2

cosh2 α
∼ α′ (4.5)

Secondly, the curvature and string coupling are small all the way from the asymptotic

region to the horizon:

Rr=rH
∼ 1

r2
H

∼
(

sinh 2α

W

)
2

n−1

· m2
s ¿ m2

s

gs(rH) =
gs(∞)

cosh α
¿ 1.

(4.6)

4.2 A possible spacetime picture.

In this region of parameter space we can approximate the physics outside and not too

far away from the horizon with flat space formulas. In principle, as we approach r = 0

(keeping couplings small to allow the use of this flat space analysis) more and more winding

tachyons enter into the spectrum according to (3.2). To keep things simple we choose the

first tachyon to appear just outside the horizon and concern ourselves only with the effects

of that tachyon on an asymptotic observer.

The essential feature of the black ring is the geometrical fact that the effective radius of

a circle shrinks as we move in radially in a fashion that allows to have a Scherk-Schwarz [24]

winding tachyon just outside the horizon, keeping both the gs and α′ expansions under

control. In such a set-up the space just outside the horizon is flat to a good approximation

and as such subject to Witten’s instability. The fact that the rate of decay into a flat-space

BON (eq. (1.1)) becomes higher and higher as one moves in radially towards the black ring

horizon lends some support to Horowitz’s conjecture.

At the horizon, where the first winding tachyon appears, the work of [13] makes it

seem possible that the rate of decay becomes of order one. Our study of the tachyon

instability showing marginal stability in the presence of the tachyon indicates that this is

a real possibility. However, one can not answer this question within the range of validity

of the α′ expansion.
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r
H

effR   ~ sl

R   ~ 0
eff

effR   >> ls

Figure 2: A possible spacetime picture for the Horowitz process. This figure shows a section of the

black ring. The curvature outside the horizon and far away is small so the space there is almost

flat and suffers from the usual Witten instability. Near the horizon the effective radius reaches the

string scale so winding tachyons appear, perhaps causing an enhancement of the decay rate into

BONs (drawn as empty circles).

5. Conclusions

In this note, we constructed a set of configurations which interpolate between the KK vac-

uum and a bubble of nothing, and describe the potential barrier. For these configurations,

we saw that, to leading order in α′, the presence of the tachyon does not lead to a lowering

of the barrier and an enhancement of the tunneling rate. On the other hand, as the radius

approaches the string scale, the action and the solution change so the analysis requires

modification. If there are instabilities, it is necessary to understand the structure of the

tachyon effective action; for example, is the potential bounded below? In principle, this is a

problem of weak coupling, but for a general background, string techniques do not presently

exist to address it. Conceivably, in some cases, conformal field theory techniques can be

used to analyze this problem, along the lines of [13]. But for the moment, we must admit

various logical possibilities when R ∼ `s:

1. The potential changes by an order one amount, but the amplitude (1.1) is still highly

suppressed at weak string coupling.

2. The barrier disappears and the tunneling rate is unsuppressed.

Energetically, for string scale compactifications, it is quite plausible that the barrier to tun-

neling to nothing disappears. In this case, Horowitz’s observation that topological defects

can catalyze these processes is surely important. It may indicate that even in regimes of

moduli space where one would have thought these states would be highly metastable, they

are short-lived. Conceivably, this could be an argument that the world around us should

have at least some approximate supersymmetry.

Recently, string constructions with all moduli stabilized, and which appear inherently

perturbative, have been put forward [31]. It appears possible to extend these constructions
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to Scherk-Schwarz compactifications [32]. In such models, some of the questions we have

proposed may be sharper but it seems likely that also in this case higher α′ corrections will

not be under control.
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